Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions.


Human multisensory systems are known to bind inputs from the different sensory modalities into a unified percept, a process that leads to measurable behavioral benefits. This integrative process can be observed through multisensory illusions, including the McGurk effect and the sound-induced flash illusion, both of which demonstrate the ability of one sensory modality to modulate perception in a second modality. Such multisensory integration is highly dependent upon the temporal relationship of the different sensory inputs, with perceptual binding occurring within a limited range of asynchronies known as the temporal binding window (TBW). Previous studies have shown that this window is highly variable across individuals, but it is unclear how these variations in the TBW relate to an individual's ability to integrate multisensory cues. Here we provide evidence linking individual differences in multisensory temporal processes to differences in the individual's audiovisual integration of illusory stimuli. Our data provide strong evidence that the temporal processing of multiple sensory signals and the merging of multiple signals into a single, unified perception, are highly related. Specifically, the width of right side of an individuals' TBW, where the auditory stimulus follows the visual, is significantly correlated with the strength of illusory percepts, as indexed via both an increase in the strength of binding synchronous sensory signals and in an improvement in correctly dissociating asynchronous signals. These findings are discussed in terms of their possible neurobiological basis, relevance to the development of sensory integration, and possible importance for clinical conditions in which there is growing evidence that multisensory integration is compromised.


2 Figures and Tables

Download Full PDF Version (Non-Commercial Use)